|
OpenCV-Python是一个Python库,旨在解决计算机视觉问题。
OpenCV是一个开源的计算机视觉库,1999年由英特尔的Gary Bradski启动。Bradski在访学过程中注意到,在很多优秀大学的实验室中,都有非常完备的内部公开的计算机视觉接口。这些接口从一届学生传到另一届学生,对于刚入门的新人来说,使用这些接口比重复造轮子方便多了。这些接口可以让他们在之前的基础上更有效地开展工作。OpenCV正是基于为计算机视觉提供通用接口这一目标而被策划的。
安装opencv- pip3 install -i https://pypi.doubanio.com/simple/ opencv-python
复制代码 思路:
1、首先区分三张图片:
base图片代表初始化图片;
template图片代表需要在大图中匹配的图片;
white图片为需要替换的图片。
2、然后template图片逐像素缩小匹配,设定阈值,匹配度到达阈值的图片,判定为在初始图片中;否则忽略掉。
3、匹配到最大阈值的地方,返回该区域的位置(x,y)
4、然后用white图片resize到相应的大小,填补到目标区域。
match函数:- """检查模板图片中是否包含目标图片"""
- def make_cv2(photo1, photo2):
- global x, y, w, h, num_1,flag
- starttime = datetime.datetime.now()
- #读取base图片
- img_rgb = cv2.imread(f'{photo1}')
- #读取template图片
- template = cv2.imread(f'{photo2}')
- h, w = template.shape[:-1]
- print('初始宽高', h, w)
- res = cv2.matchTemplate(img_rgb, template, cv2.TM_CCOEFF_NORMED)
- print('初始最大相似度', res.max())
- threshold = res.max()
- """,相似度小于0.2的,不予考虑;相似度在[0.2-0.75]之间的,逐渐缩小图片"""
- print(threshold)
- while threshold >= 0.1 and threshold <= 0.83:
- if w >= 20 and h >= 20:
- w = w - 1
- h = h - 1
- template = cv2.resize(
- template, (w, h), interpolation=cv2.INTER_CUBIC)
- res = cv2.matchTemplate(img_rgb, template, cv2.TM_CCOEFF_NORMED)
- threshold = res.max()
- print('宽度:', w, '高度:', h, '相似度:', threshold)
- else:
- break
- """达到0.75覆盖之前的图片"""
- if threshold > 0.8:
- loc = np.where(res >= threshold)
- x = int(loc[1])
- y = int(loc[0])
- print('覆盖图片左上角坐标:', x, y)
- for pt in zip(*loc[::-1]):
- cv2.rectangle(
- img_rgb, pt, (pt[0] + w, pt[1] + h), (255, 144, 51), 1)
- num_1 += 1
- endtime = datetime.datetime.now()
- print("耗时:", endtime - starttime)
- overlay_transparent(x, y, photo1, photo3)
- else:
- flag = False
复制代码 replace函数:- """将目标图片镶嵌到指定坐标位置"""
- def overlay_transparent(x, y, photo1, photo3):
- #覆盖图片的时候上下移动的像素空间
- y += 4
- global w, h, num_2
- background = cv2.imread(f'{photo1}')
- overlay = cv2.imread(f'{photo3}')
- """缩放图片大小"""
- overlay = cv2.resize(overlay, (w, h), interpolation=cv2.INTER_CUBIC)
- background_width = background.shape[1]
- background_height = background.shape[0]
- if x >= background_width or y >= background_height:
- return background
- h, w = overlay.shape[0], overlay.shape[1]
- if x + w > background_width:
- w = background_width - x
- overlay = overlay[:, :w]
- if y + h > background_height:
- h = background_height - y
- overlay = overlay[:h]
- if overlay.shape[2] < 4:
- overlay = np.concatenate([overlay, np.ones((overlay.shape[0], overlay.shape[1], 1), dtype=overlay.dtype) * 255],axis=2,)
- overlay_image = overlay[..., :3]
- mask = overlay[..., 3:] / 255.0
- background[y:y + h,x:x + w] = (1.0 - mask) * background[y:y + h,x:x + w] + mask * overlay_image
- # path = 'result'
- path = ''
- cv2.imwrite(os.path.join(path, f'1.png'), background)
- num_2 += 1
- print('插入成功。')
- init()
复制代码 每次执行需要初始化x,y(图片匹配初始位置参数),w,h(图片缩放初始宽高)- x = 0
- y = 0
- w = 0
- h = 0
- flag = True
- threshold = 0
- template = ''
- num_1 = 0
- num_2 = 0
- photo3 = ''
- """参数初始化"""
- def init():
- global x, y, w, h, threshold, template,flag
- x = 0
- y = 0
- w = 0
- h = 0
- threshold = 0
- template = ''
复制代码 完整代码- import cv2import datetimeimport osimport numpy as npx = 0
- y = 0
- w = 0
- h = 0
- flag = True
- threshold = 0
- template = ''
- num_1 = 0
- num_2 = 0
- photo3 = ''
- """参数初始化"""
- def init():
- global x, y, w, h, threshold, template,flag
- x = 0
- y = 0
- w = 0
- h = 0
- threshold = 0
- template = ''"""检查模板图片中是否包罗目标图片"""def make_cv2(photo1, photo2): global x, y, w, h, num_1,flag starttime = datetime.datetime.now() img_rgb = cv2.imread(f'{photo1}') template = cv2.imread(f'{photo2}') h, w = template.shape[:-1] print('初始宽高', h, w) res = cv2.matchTemplate(img_rgb, template, cv2.TM_CCOEFF_NORMED) print('初始最大相似度', res.max()) threshold = res.max() """,相似度小于0.2的,不予考虑;相似度在[0.2-0.75]之间的,逐渐缩小图片""" print(threshold) while threshold >= 0.1 and threshold <= 0.83: if w >= 20 and h >= 20: w = w - 1 h = h - 1 template = cv2.resize( template, (w, h), interpolation=cv2.INTER_CUBIC) res = cv2.matchTemplate(img_rgb, template, cv2.TM_CCOEFF_NORMED) threshold = res.max() print('宽度:', w, '高度:', h, '相似度:', threshold) else: break """达到0.75覆盖之前的图片""" if threshold > 0.8: loc = np.where(res >= threshold) x = int(loc[1]) y = int(loc[0]) print('覆盖图片左上角坐标:', x, y) for pt in zip(*loc[::-1]): cv2.rectangle( img_rgb, pt, (pt[0] + w, pt[1] + h), (255, 144, 51), 1) num_1 += 1 endtime = datetime.datetime.now() print("耗时:", endtime - starttime) overlay_transparent(x, y, photo1, photo3) else: flag = False"""将目标图片镶嵌到指定坐标位置"""def overlay_transparent(x, y, photo1, photo3): y += 0 global w, h, num_2 background = cv2.imread(f'{photo1}') overlay = cv2.imread(f'{photo3}') """缩放图片大小""" overlay = cv2.resize(overlay, (w, h), interpolation=cv2.INTER_CUBIC) background_width = background.shape[1] background_height = background.shape[0] if x >= background_width or y >= background_height: return background h, w = overlay.shape[0], overlay.shape[1] if x + w > background_width: w = background_width - x overlay = overlay[:, :w] if y + h > background_height: h = background_height - y overlay = overlay[:h] if overlay.shape[2] < 4: overlay = np.concatenate([overlay, np.ones((overlay.shape[0], overlay.shape[1], 1), dtype=overlay.dtype) * 255],axis=2,) overlay_image = overlay[..., :3] mask = overlay[..., 3:] / 255.0 background[y:y + h,x:x + w] = (1.0 - mask) * background[y:y + h,x:x + w] + mask * overlay_image # path = 'result' path = '' cv2.imwrite(os.path.join(path, f'1.png'), background) num_2 += 1 print('插入乐成。') init()if __name__ == "__main__": photo1 = "1.png" photo2 = "3.png" photo3 = "white.png" while flag == True: make_cv2(photo1, photo2) overlay_transparent(x, y, photo1, photo3)
复制代码 执行结果:
到此这篇关于Python+OpenCV实现图像识别替换功能详解的文章就介绍到这了,更多相关Python OpenCV图像识别替换内容请搜索趣UU以前的文章或继续浏览下面的相关文章希望大家以后多多支持趣UU!
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作! |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有账号?立即注册
x
|